SYNTHESIS AND PROPERTIES OF 5-(2,3-DIPHENYLCYCLOPROPENYLIDENE)-1,6-METHANO-2(5H)-[10]- ANNULENONE (OR 10,11-DIPHENYL-4,9-METHANO[3.10]QUINAREN-3-ONE). CONTRIBUTION OF A HOMOBENZENE STRUCTURE ANNELATED ON $[3.6]$ QUINAREN-3-ONE¹⁾

Kazuko Takahashi,* Keiichi Ohnishi, and Kahei Takase Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Summary: The title quinarenone 2 has been prepared and proved that the three-membered ring possesses a larger diatropicity than diphenylcyclopropenone and the seven-membered ring exists *in a cycloheptatriene (not norcaradienel tautomer having a contribution of a homobenzene structure. The rotational barrier about the intercyclic bond of 2 is 13.3 KcaZ/mol.*

We have recently clarified that 6,7-diphenyl[3.6]quinaren-3-one (1), $^{2)}$ a benzene ringinserted type diphenylcyclopropenone, has the largest contribution of a π -charge transfer interaction to the ground state in the annulenone and quinarenone (inserted type annulenone) siries known so far, and such a conjugation enhancement is regarded *to* be developed by the significant aromatizability of the inserted quinonoid ring which stabilizes the charge separated resonance structure $\underline{\textbf{lb}}$. Therefore, through the changes in the $\pi\text{-}$ charge transfer interaction that occur on going from 1 to its 5-methylene-1,6-methano-2(5H)-[lO]annulenone analog 2, it appears to be possible to evaluate how the 10-membered cyclic π -system could stabilize the charge separated resonance structure 2b as compared with a benzene ring. It is also fruitful to disclose how the peripheral or transannular interaction in the bridged lomembered ring³⁾ could be affected on insertion of this ring system into a cyclopropenone system. From these viewpoints we have now synthesized 4,9-methano[3.10]quinaren-3-one 2, the first one of lo-membered quinonoid ring inserted type cyclopropenones, and compared its properties with those of 1. and mother diphenylcyclopropenone, which are reported herein.

Both of a carbonyl oxygen atom and a cyclopropenylidene moiety were introduced into $1,6$ methano[10]annulene according to the procedure as follows: 2-bromo-5-styryl derivative $3,$ ⁴⁾ obtained through the highly regiospecific bromination of 2-styry1-1,6-methano[10]annulene⁵⁾ with NBS, was first allowed to react with magnesium and then with t-butylperbenzoate *to* give $4.^{\circ}$ Treatment of 4 with chlorophenyldiazirine provided cyclopropane $5'$ which upon dehydrochlorination with potassium t-butoxide in THF afforded a 5 : 4 mixture of 6a⁸ and $6b,$ ⁹⁾ in 92% yield. The mixture can be separated into its components on silica gel column chromatography. Hydride abstraction of the mixture with triphenylmethyl fluoroborate in

dichloromethane at -30 °C gave t-butylated cyclopropenium ion 1 , $10)$ which was easily de-tbutylated in situ by warming the reaction solution *to* room temperature to give conjugate acid $8.$ ¹¹⁾ When treated with an equimolar amount of pyridine in dichloromethane at -40 °C under argon atmosphere, <u>8</u> yielded quantitatively a deep red solution of 2^{12} (7.6 X 10⁻² mol/1). which was evidenced by 200 MHz 1 H NMR spectral analysis of the solution (Figure 1). In such a concentration of dichloromethane solution, <u>2</u> is stable below 0 $^{\circ}$ C, whereas decomposed at room temperature within 30 min. $^{13)}$

According to the geminal coupling constant of the bridge protons $(Ja,s = 10.0 \text{ Hz})$ and the vicinal coupling constant $J6$, 7, which is larger than the $J5$, 6 and $J7$, 8 (Table 1), 2 is considered to exist in a cycloheptatriene tautomer rather than in a norcaradiene tautomer.¹⁴⁾

The chemical shift difference between H-2 and H-1 of 2 ($\Delta\delta$ = 1.65 ppm) is almost consistent with that of 8 ($\Delta \delta$ = 1.62 ppm). The chemical shifts of the phenyl protons of 2 are $0.5~0.6$ ppm lower than those of 6b, whereas they are 0.18 (Ph-m,p) \sim 0.25 ppm (Ph-o) higher than those of 8, and the latter $\Delta\delta$ values between 2 and 8 are not so different from the $\Delta\delta$ values (0.12 ppm for Ph-m,p, 0.24 ppm for Ph-o) between 1 and its conjugate acid.²⁾ These observations indicate an appreciable contribution of the dipolar structure 2b to the ground state of <u>2</u>. Furthermore, the chemical shifts of phenyl protons of <u>2</u> are by about 0.2 \sim 0.3 ppm lower than those of diphenylcyclopropenone 2, revealing that the diatropicity of the

3-membered ring is surely enhanced by the insertion of a $1,6$ -methano[10]annulene ring into 9.

The chemical shifts of H-6,7 of 2, being by 0.82×0.98 ppm downfield from those of H-3,4 of 1,6-methanocyclodeca-1,3,5-triene, lie in an aromatic region and the difference between the coupling constants $J6$,7 and $J5$,6 ($J7$,8) of 2 is nearly the same as those of 8. Although the signals of both bridge protons H-a and H-s of 2 appear relatively downfield from those of the corresponding protons of 8, the shift of H-a is smaller by about one fourth than the shift of H-s. Thus the $\Delta\delta$ value between H-a and H-s is significantly increased in 2 (2.36 ppm) relative to the corresponding $\beta \delta$'s for 4 (0.81 ppm) and 8 (1.09 ppm). These facts suggest that an induced homobenzene type ring current³ is appreciably maintained in the C-4,5,6,7,8,9 region of 2, which results in a deshielding and shielding anisotropic effect on the outer (H-s) and inner (H-a) protons, respectively refered to the homobenzene moiety.

This proposal is further confirmed by the analysis of electronic spectrum of 2. A variety of PPP-CI calculations on 2^{15} were thus performed by introducing cross ring resonance integrals, $\beta_{4,9}$ being varied from 0 to -1.5 eV. By comparing the theoretical transition energies obtained in this way with the experimental ones, the most likely value of $\beta_{4,9}$ for $\frac{2}{3}$ was found to be -0.48 \sim -0.72 eV (Table 2), which corresponds to 20 \sim 30 % of the resonance integral for benzene. The occupied orbitals (π_{13} and π_{12}) and the unoccupied orbitals (π_{15} and π_{16}) of <u>2</u> are stabilized and destabilized, respectively with the increase of $\beta_{\!4\!},$ g, thus resulting in the blue shifts of the E2, E3, and E4 bands. These findings also correlate well with the π -bond orders in 2' (unphenylated) calculated by the CNDO/2 (Figure 3). The broad El band of 2 assigned to the $\pi_{13} \rightarrow \pi_{14}$ transition, is regarded to be an intramolecular C-T band, since the π_{13} exhibits large 2p π AO's on C-13, 2, 4, 9, and oxygen atom and the π_{14} is characteristic of one of the degenerate LUMO's (π_A^*) of diphenylcyclopropenium ion. The symmetry behavior of these two orbitals resembles closely that of the π -HOMO and the π -LUMO of 1, respectively.²⁾

Figure 3. π -Bond orders of 2' calcd. by the $CNDO\bar{Z}2$

The $^{\mathrm{1}}$ H NMR signals of the ortho phenyl protons of 2 were consisted of two broad lines (W1/2 = 12 Hz) separated by Ca. 20 Hz with equal areas below -40 °C, and coalesced into a single broad resonance at 8.30 ppm (4H) at -10 $^{\circ}$ C, giving a rotational barrier about the intercyclic bond AG^* = 13.3 Kcal/mol. This value is nearly as low as that for 1. The potential energy of the twisted, zwitterionic, and fully aromatic transition state 2^* for the rotation about the intercyclic bond is assumed to be much higher in the case of 2 than 1 , since the resonance energy of 1,6-methano[10]annulene (17.2 Kcal/mol) is about 9 Kcal/mol less than that of benzene.¹⁶) Therefore the potential energy of the ground state of 2 has to be higher by nearly the same value than that of 1 .

Another feature of interest is the observation that the quinarenone 2 exists as a monomer

5688

in a dichloromethane solution of the concentrations of $1\mathtt{\sim}7$ X 10^{-2} mol/l at the temperature which the intramolecular rotation is possible, while $\underline{1}^{2)}$ exists in equilibrium with its oligomer under the same conditions. This difference could be attributable to the poor nucleophilicity of the oxygen atom in the transition state 2^* relative to that of 1, which is just expectable in regard to the fact that the keto form of 2-hydroxy-1,6-methano[lO]annulene¹⁷⁾ is sufficiently stable to be isolated whereas the enol form preponderates in DMSO.

References and Notes

- 1) Cyclic Cross-conjugated Hydrocarbons having an Inserted p-Quinonoid Ring XVI. Part XV: K. Takahashi, T. Nozoe, K. Takase, and T. Kudo, Tetrahedron Lett., 25, 77 (1984).
- 2) K. Takahashi, K. Ohnishi, and K. Takase, Tetrahedron Lett., <u>25</u>, 73 (1984).
- 3) H. J. Dewey, H. Degar, W. Frolich, B. Dick, K. A. Klingensmith, G. Hohlneicher, E. Vogel, and J. Mich1, J. Am. Chem. Soc., 102, 6412 (1980).
- 4) <u>3</u>: Yellow orange solid, mp. 85~106°C, 70% yield; IR (KBr) 3030, 2950, 1600, 1445 cm $^{-1};$ m/e (%) 324 (M+2, 47), 322 (M⁺, 47), 243 (96), 228 (100); ¹H NMR (CDC1₃) δ -0.36 (d, J=10 Hz, 1H, H-a), 0.12 (dm, J=10 Hz, H-s), 7.03~7.86 (m, 13H). The appearance of H-a as a sharp doublet while H-s as broad doublet due to long range coupling with H-7 and H-10 reject any other isomers than 3.
- 5) This compound was obtained by the Wittig reaction of $2\texttt{-formula,6-methano}$ [10]annulen
- 6) <u>4</u>: Orange oil, 42% yield; IR (neat) 2980, 1600, 1530, 1490, 1450, 1380, 1355 cm $^{-1}$; MS m/e (4) 316 (M⁺, 22), 260 (100).
- 7) <u>5</u>: Orange solid, 87% yield, MS m/e (%) 440 (M⁺, 6), 384 (39), 349 (100); ¹H NMR (CDCl₃)∂ -0.68, -0.75, -0.81 (three d, J=lO Hz, lH, H-a), -0.05, -0.41, and -0.24 (three dm, J=lO Hz, lH, H-s), 1.42, 1.37, and 1.14 (three s, 9H, tBu, 8:1:5), 3.36~3.73 (m, ZH, cyclopropane), $6.27 \sim 7.83$ (m, 16H, other protons).
- 8) <u>6a</u>: Orange solid, IR (KBr) 1800, 1600 cm ~; MS m/e (%) 404 (M^{r_}56, 100); ~H NMR (CDC1₃)∂ -0.46, -0.48 (two d, J=lO Hz, lH, H-a), 0.26, 0.36 (two dm, J=lO Hz, lH, H-s), 1.43 (s, 9H, tBu), 3.33, 3.22 (two s, lH, cyclopropene, 3:8), 6.69, 6.63 (two d, J=lO Hz, lH, H-2), $7.08 \sim 7.95$ (m, 15H).
- 9) <u>6b</u>: Orange solid, IR (KBr) 1820, 1600 cm ⁻; MS m/e (%) 404 (M , 4), 348 (M -56, 100); ⁻H NMR (CDC1₃) δ -0.70 (d, J=10 Hz, 1H, H-a), -0.06 (dm, J=10 Hz, 1H, H-s), 1.32 (s, 9H, tBu), 3.77 (s, lH, cyclopropene), 6.47 (d, J=lO Hz, lH, H-2), 6.57 (d, J=lO Hz, lH, H-4), $7.08 \sim 7.97$ (m. 4H, other protons).
- 10) 7: Yellow needles, mp. 112°C (decomp.), 66% yield; IR (KBr) 1828, 1600, 1485, 1453, 1430, $\overline{1}333 \text{ cm}^{-1}$; 1H NMR (CDC13) δ -0.11 (d, J=10.4 Hz, 1H, H-a), 1.04 (ddd, J=10.4, 0.9, and 0.9 Hz, lH, H-s), 1.60 (s, 9H, tBu), 7.25 (ddd, 3=7.7, 1.6, and 0.9 Hz, lH, H-B), 7.28 (d, J=10.2 Hz, lH, H-2), 7.40 (dd, J=9.5 and 7.7 Hz, lH, H-6), 8.73 (d, J=10.2 Hz, lH, H-l), 7.52 (dd, J=9.5 and 7.7 Hz, 1H, H-7), 7.69 (ddd, J=7.7, 1.6, and 0.9 Hz, 1H, H-5), 7.86 \sim 7.94 (m. 6H. Ph-m.p), $8.50 \sim 8.59$ (m. 4H. Ph-ortho).
- 11) $\underline{8}$: Orange needles, mp. 217 \sim 218 \degree C (ϕ ecomp.), 49% yield; 8: Orange needles, mp. 217~218°C (decomp.), 49% yield; IR (KBr) 1828, 1600, 1580, 1503,
1492, 1458, 1432, 1350, 1337 cm ¹; ¹H NMR (Table 1).
- 12) 2 can not be isolated in a monomeric solid due to the instability.
- 13) In a dilute solution for electronic spectral measurements (1~5 X 10 $\lceil \text{mol}/1 \rceil, \frac{2}{\pi}$ is stable at room temperature.
- 14) 5-(Methyl-l,3-benzodithiolylidene)-1,6-methano-2(5H)-[10] annulenone also was reported to exist in the cycloheptatriene tautomer; R. Neidlein and H. Zeiner, Angew. Chem. Int. Ed. Engl., 20 , 1032 (1981).
- 15) The geometry of $\underline{2}$ is defined by reference to the X-ray parameters of bicyclo[4.4.1] \cdot undeca-3,6,8,10-tetraen-2,5-dion-2-phenylhydrazone and 2,3-diphenyl-4,4 dicyanotriafulvene.
- 16) W. R. Roth, M. Bohm, H. W. Lennartz, and E. Vogel, Angew. Chem. Int. Ed. Engl., 22, 1007 (1983).
- 17) E. Vogel, W. Schrock, and W. A. Boll, Angew. Chem. Int. Ed. Engl., 2, 732 (1966). (Received in Japan 24 July 1984)